15 Jul 2020

NATURE

Authors: Monika A. Myszczynska, Poojitha N. Ojamies, Alix M. B. Lacoste, Daniel Neil, Amir Saffari, Richard Mead, Guillaume M. Hautbergue, Joanna D. Holbrook & Laura Ferraiuolo

Abstract

Globally, there is a huge unmet need for effective treatments for neurodegenerative diseases. The complexity of the molecular mechanisms underlying neuronal degeneration and the heterogeneity of the patient population present massive challenges to the development of early diagnostic tools and effective treatments for these diseases. Machine learning, a subfield of artificial intelligence, is enabling scientists, clinicians and patients to address some of these challenges. In this Review, we discuss how machine learning can aid early diagnosis and interpretation of medical images as well as the discovery and development of new therapies. A unifying theme of the different applications of machine learning is the integration of multiple high-dimensional sources of data, which all provide a different view on disease, and the automated derivation of actionable insights.


Back to publications

Latest publications

01 Jun 2024
arXiv Computer Science
Retrieve to Explain: Evidence-driven Predictions with Language Models
Read more
01 May 2024
Journal of Biomedical Semantics, volume 15, Article number: 5 (2024)
Elucidating the Semantics-Topology Trade-off for Knowledge Inference-Based Pharmacological Discovery
Read more
12 Oct 2023
Translational Neurodegeneration. 2023; 12: 47
Janus kinase inhibitors are potential therapeutics for amyotrophic lateral sclerosis
Read more