19 Mar 2019

JOURNAL OF CHEMICAL INFORMATION AND MODELING

Authors: Nathan Brown, Marco Fiscato, Marwin H.S. Segler , and Alain C. Vaucher

Abstract

De novo design seeks to generate molecules with required property profiles by virtual design-make-test cycles. With the emergence of deep learning and neural generative models in many application areas, models for molecular design based on neural networks  appeared  recently  and  show  promising  results. However,  the  new  models have not been profiled on consistent tasks, and comparative studies to well-established algorithms have only seldom been performed.  To standardise the assessment of both classical  and  neural  models  for de novo molecular  design, we  propose  an  evaluation framework, GuacaMol, based on a suite of standardised benchmarks. The benchmark tasks encompass measuring the fidelity of the models to reproduce the property distribution of the training sets, the ability to generate novel molecules, the exploration and exploitation of chemical space, and a variety of single and multi-objective optimisation tasks.  The benchmarking framework is available as an open-source Python package.


Back to publications

Latest publications

01 Jun 2024
arXiv Computer Science
Retrieve to Explain: Evidence-driven Predictions with Language Models
Read more
01 May 2024
Journal of Biomedical Semantics, volume 15, Article number: 5 (2024)
Elucidating the Semantics-Topology Trade-off for Knowledge Inference-Based Pharmacological Discovery
Read more
12 Oct 2023
Translational Neurodegeneration. 2023; 12: 47
Janus kinase inhibitors are potential therapeutics for amyotrophic lateral sclerosis
Read more