07 Jun 2019

Subjects
AI drug discovery

Our team investigates the Target-ID process for GBM using ML methods to identify genes or proteins involved in the development of GBM stem cells, the cells that are resistant to the current treatments.

After creating a knowledge base around the disease (see episode 2) our team created a specific workflow around literature based data. By applying AI models, each interrogating a different component of the data sets, we can generate a list of possible hypotheses for genes involved in GBM.

It is important to train machine learning to do what we consider tedious, yet critical tasks. It frees up scientists to focus their energy on exploring hypotheses.

Watch our team discuss the unique way we approach target identification at BenevolentAI.

Our_team_behind_the_scenes_at_SXSW___Target_Identification_Literature_Knowledge_Inference.jpg

Back to blog post and videos